Visualization of anomaly detection using prediction sensitivity

نویسندگان

  • Pavel Laskov
  • Konrad Rieck
  • Christin Schäfer
  • Klaus-Robert Müller
چکیده

Visualization of learning-based intrusion detection methods is a challenging problem. In this paper we propose a novel method for visualization of anomaly detection and feature selection, based on prediction sensitivity. The method allows an expert to discover informative features for separation of normal and attack instances. Experiments performed on the KDD Cup dataset show that explanations provided by prediction sensitivity reveal the nature of attacks. Application of prediction sensitivity for feature selection yields a major improvement of detection accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal anomalies detection before earthquake using three filters (Fourier, Wavelet and Logarithmic Differential Filter), A Case Study of two Earthquakes in Iran

Earthquake is one of the most destructive natural phenomena which has human and financial losses. The existence of an efficient prediction system and early warning system will be useful for reducing effects of destroying earthquake. In this research, the soil temperature time-series data, obtained from three meteorological station, using three filters (Fourier, Wavelet and Logarithmic Different...

متن کامل

A Novel Ensemble Approach for Anomaly Detection in Wireless Sensor Networks Using Time-overlapped Sliding Windows

One of the most important issues concerning the sensor data in the Wireless Sensor Networks (WSNs) is the unexpected data which are acquired from the sensors. Today, there are numerous approaches for detecting anomalies in the WSNs, most of which are based on machine learning methods. In this research, we present a heuristic method based on the concept of “ensemble of classifiers” of data minin...

متن کامل

A Novel Filter Based Ensemble Based Anomaly Detection Model for Uncertain Data

Due to the rapid growth of high speed network, the risk of credit-card attacks on the complex networks are also increases accordingly. Anomaly discovery from the database is a process of filtering uncertain features, so that it can be used wide variety of applications. Since the online distributed data is the communication between the remote client and the centralized server, it is difficult to...

متن کامل

Detection of Mo geochemical anomaly in depth using a new scenario based on spectrum–area fractal analysis

Detection of deep and hidden mineralization using the surface geochemical data is a challenging subject in the mineral exploration. In this work, a novel scenario based on the spectrum–area fractal analysis (SAFA) and the principal component analysis (PCA) has been applied to distinguish and delineate the blind and deep Mo anomaly in the Dalli Cu–Au porphyry mineralization area. The Dalli miner...

متن کامل

The detection of 11th of March 2011 Tohoku's TEC seismo-ionospheric anomalies using the Singular Value Thresholding (SVT) method

The Total Electron Content (TEC) measured by the Global Positioning System (GPS) is useful for registering the pre-earthquake ionospheric anomalies appearing before a large earthquake. In this paper the TEC value was predicted using the singular value thresholding (SVT) method. Also, the anomaly is detected utilizing this predicted value and the definition of the threshold value, leading to the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005